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1. Introduction
R. Weaver

The following report briefly outlines our progress under the Sea Ice Atmosphere

Interaction: Application of Multispectral Satellite Data in Polar Surfae Energy Flux

Estimates, proposal NAGW-2158. =In the past six months we have continued our work on

energy flux sensitivity studies, ice surface temperature retrievals, corrections to AVHRR

thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies.

Each of these topics are presentec[in the following sections. It must be noted that these

reports represent work in progress: A more complete report will be presented in the next

annual report and in the various research papers either in press or in preparation.

Summary

We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice

concentration and type to improve our shorter term energy flux estimates. SSM/I derived

parameters may still be applicable in longer term climatological tTux characterizations.

We hold promise for a system coupling observations to a ice deformation model. Such a

model may provide information on ice distribution which can be used in energy tTux
calculations.

We have found considerable variation in modelled energy flux estimates when bulk transfer

coetFecients are modulated by lead fetch. It is still unclear what the optimum formulation

is and this _11 be the subject of further worlc

Data sets for ice surt_ce temperature retrievals ha ve been assembled and preliminary data

analysis has started. More data ,411 be collected this coming summer over Greenland and

possibly over the central Arctic from a Soviet Ice Breaker, if funding is approved.

Finally we have started to construct a conceptual framemgrk for further modelling of the

Arctic radiation flux climatology. ,- =
tu_j



2. Sensitivity of Passive Microwave Data for Heat Flux Retrieval

A. Schweiger and K. Steffen

The potential of passive microwave derived sea ice information for the calculation of heat

fluxes at the Arctic ocean surface was investigated. The sensitivity of individual surface

energy balance terms to the information content and the inherent error in the passive

microwave derived sea ice parameters was tested using a simple energy balance model of

the ice covered ocean surface. The model follows Maykut (1978) with a modification to

allow for variable lead sizes and is discussed in a previous report (Steffen et al., 1990).

Ice thickness distributions from dynamic ice modelling experiments (Maykut, 1982), as

well as climatological data on radiative components were utilized to compute turbulent

fluxes over sea ice. Calculations were made using the full (Maykut type model) thickness

distribution in 5 categories, a 2 category thickness distribution (ice/open water) optimized

for passive microwave data, and a 3 category thickness distribution (thick ice/thin-

ice/open-water) using a passive microwave algorithm assuming a limited thickness (< 0.8

m) of the first-year ice category. Some of the preliminary results are summarized below

and will be detailed in a later report.

2.1 Marginal Ice Zone

In the marginal ice zone, where thin ice types dominate, information on the relative

abundance of these ice types is necessary to compute turbulent fluxes with any reasonable

accuracy. Current passive microwave algorithms, are not capable of producing this type of

information. Even though individual studies (Steffen, 1991) have shown that the different

emissivity of thin ice indicates a potential for the retrieval, this capability is limited to

situations when the extent of thin ice types is large enough to cover an entire footprint.

Further work, through a combination of different sensors, eg. AVHRR ice surface

temperatures or inclusion of coupled dynamic/thermodynamic ice models might improve
this situation.

2.2 Central Pack Ice

In the central pack, the use of ice concentrations, in the calculation of the turbulent part of

the energy balance faces different set of problems. If one assumes, that ice concentrations

may be retrieved with 100 % accuracy by a particular passive microwave based sea ice

concentration algorithm, then the potential error due to poor thickness resolution (2

category algorithm, open water/ice) is of the same order of magnitude as the variability

that can be expected to be observed (Fig. 1). This fact eliminates the capability to monitor

any changes in the surface energy balance due to changes in ice concentrations over time.

The inclusion of passive microwave observed ice concentrations will not significantly

improve estimates of surface energy balance calculated solely from other data. While a

hypothetical 3 thickness category algorithm (0.0-0.1m, 0.1-0.8 m, > 0.8 m) would



significantly reduce the above discussed problems (see Fig. 2 compared to Fig. 1), the

following questions needs to be answered:

In what way do variations in the observed passive microwave signal and

derived geophysical parameters (ice types: open water, #rst-year ice, multi-

year ice) relate to energy balance calculations (turbulent componenO.

If one assumes that first year ice grows to a certain thickness (up to 0.8 m), then flux

calculations would be relatively straight forward assuming a linear temperature gradient in

the ice. Fluxes over the thick multi-year ice could be estimated using a multi-level

thermodynamic model (eg. Semtner, 1976). Certain assumptions would also have to be

made regarding how the model the characteristics of the ice surface due to ice movements.

We are considering alternatives as th how one might model ice floes that are moving

through regions of differing energy balance conditions (eg. ice flows from the marginal

pack, through the central Arctic or vice versa).

Unfortunately, the assumption of FYI representing a category of particular ice thickness is

not a very good one, since thin ice is constantly undergoing dynamic deformation.

Thermodynamic profiles of deformed FYI are most likely similar to those of MYI, and

can therefore not be approximated using the linear gradient model (unpublished data

Resolute Bay, K. Steffen). Due to this fact, a passive microwave based algorithm would

have to produce information on open water fraction, undeformed FYI ice and deformed

ice. There is some indication that deformed FYI ice signatures are similar to those of

MYI because of brine drainage, and greater amounts of snow, but evidence for this fact is

sketchy and can hardly be accepted in a general sense.

In light of the above outlined problems, the question as to what can be done in terms of

their resolution has to be discussed. Accepting the fact that only 2 thermodynamically

relevant classes can be retrieved using passive microwave sensors, assumptions regarding

the distribution of thinner ice types must be made. The simplest approximation is to

assume constant relationship between the classes. This is probably not a very good

assumption, since the presence of open water and thin ice are interconnected. Since thin

ice is formed in developing leads especially in years with greater dynamic activity, the

fraction of open water would be expected to be larger and, therefore, result in the

production of greater amounts of thin ice. On the other hand, a greater dynamic activity

would also cause increased ridging of thin ice which would offset the increased production

of thick ice. With respect to compiling a climatology of fluxes, a constant or seasonally

varying distribution would be difficult to justify. The question is then: what is the

"corect" climatological distribution of thin ice. Data from Arctic submarine sonar are

limited to summer (Queenfish, Nautilus) and spring _Gurnard) and provide information

over very limited areas. They contribute little to our description of surface variability for

a surface energy balance climatology. Maykut (1978, 1982) computed a spatially

invariant surface energy balance for the central Arctic which employed modelled ice

thickness distributions derived from a thermodynamic/dynamic model. These modelled

ice thicknesses can then be used in the calculation of the surface energy balance.



Maykut's ice thicknessdistributionsare basedon straindata from Arctic ice islandsand
are limited to an areain the BeaufortSea. For the computationof a basinwide surface
energy balance climatology, thicknessdistributions are required for the entire basin.
Hibler and Flato have implementedthe ice thicknessdistribution theory developedby
Thorndike et. al (1975) in their large scale sea ice model. Thickness distributions from

this model would represent a suitable data set for the task at hand. Turbulent exchange at

the ice/atmosphere interface could be calculated using this distribution using a multi-level

thermodynamic model (eg. Semtner 3 layer model). The use of modelled ice thickness

distributions is somewhat circular though: Since dynamic/thermodynamic sea ice models

calculate ice growth based on computed fluxes, these model calculations should provide

the desired climatology directly. But this is not quite so. Since the thermodynamic

calculations in Hibler's model are based on the 0 layer SEMTNER model, the temperature

gradient for all ice types is assumed to be linear. While this assumption produces ice

growth rates that are in reasonable agreement with the multi-layer calculation, the energy

exchange at the surface is modelled inaccurately. As indicated in Fig. 3, the large scale

area weighted fluxes can be quite different and even reversed in direction, when a linear

temperature gradient assumption is made. While modelers realize this inconsistency, the

formulation of more realistic thermodynamics (e.g. a multi-level model) poses significant

difficulties in terms of modelling the advection of the vertical ice temperature gradient

(Hibler pers. communication). In light of the fact, that ice thickness distributions may be

considered relatively accurate with respect to the problem at hand, the proposed "circular"

approach seems to have validity.

If ice thickness distributions can be modelled though, the use of passive microwave

information in the calculation of the Arctic surface energy balance assumes a different

role. This role would be the validation of and accuracy assessment of the modelled ice

concentrations. If modelled ice concentrations match passive microwave derived

concentrations, the argument may be made, that the ice thickness redistribution function

reflects the physical processes involved in converting the various ice thicknesses is also

correct. An important step in the compilation of a ice thickness climatology would

therefore be the cross-validation of modelled and passive microwave derived ice

concentration. This comparison would further provide some limits on the errors that can

be expected in the calculation of the surface energy balance based on modelled ice
thickness distributions.

In the previous discussion we made the assumption, that ice concentrations can be

retrieved with absolute accuracy by the a passive microwave based algorithm. This of

course is not so. We have found in previous studies, that the error in ice concentrations

lies in the order of 3 % (Steffen and Schweiger, 1991). The selection of appropriate tie

points, for particular areas and times of the year though might distribute the error evenly

about the mean, so that for longer term averages the assumption of an accurate open water

fraction might not be such a bad one.
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Central Arctic energy balance in January calculated from a number of different ice thickness

distribution categories.

Category 1, (modelled ice thickness) represents the energy balance as calculated for the full

thickness distribution derived from dynamic/thermodynamic model calculations.

Category 2 (simulated SSM/I 0.3 %) represents the energy balance calculated based on a simulated

SSM/I algorithm. SSM/I ice concentrations were simulated by summing ice thicknesses > 0.05 m

in the modelled ice thickness distribution.

Category 3 represents the energy balance in January when 2 % open water would be present,

corresponding to the observable natural variability.

Category 4 assumes 5 % open water which would have to be considered an extreme case.

Note that the difference between category 1 and 2 is caused by the reduced resolution in ice

thickness estimate as derived from SSM/I data. This uncertanty is of the same order of magnitude

as the expected variability.
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3. Sensitivity of Large-Scale Heat Flux Estimates to Lead Width

J. Maslanik and J. Key

A formulation to adjust turbulent-flux bulk transfer coefficients that takes atmospheric

stability and fetch into account was combined with a one-dimensional ice growth model,

meteorological observations, and ice thickness data to calculate the sensitivity of turbulent

fluxes to changes in fetch, wind speed, air temperature, and surface temperature in the

Arctic. The importance of fetch under actual lead width distributions, concentration, and

ice thickness conditions is estimated using submarine sonar observations. The fetch

sensitivity increases with decreasing wind speed and with increasing instability. For high

wind speeds, fetch dependency is minimal for ice thicker than about 0.10 m. At a fetch of

10 m, the use of adjusted transfer coefficients rather than a fixed value of 0.003 results in

a decrease in sensible heat flux of 7 % for open water, 9 % for 0.15 m ice, and 11% for

0.30 m ice, using meteorological conditions typical of January in the western Arctic

(Fig.4). At a thickness of 0.05 m, averaged fluxes for November through March

calculated using the fixed transfer coefficient are 8 % greater than fluxes calculated with a

fetch of 10 m, 22 % greater than fluxes estimated with a 50 m fetch, and 29 % greater

than fluxes for a 100 m fetch. Calculations of equilibrium ice thickness using an ice

growth model forced by turbulent fluxes estimated with and without fetch and stability

adjustments yields a 2 % decrease in annual ice thickness if a mean fetch of 10 m is used,

and a 23 % decrease if a mean fetch of 100 m is assumed compared to ice thicknesses

estimated using a fixed coefficient of 0.003 for sensible and latent heat flux. In

comparison, an increase in wind speed from 5 ms -_ to 6 ms -t at a 10 m mean fetch

increases the mean annual ice thickness by 9.9 %, while a 10 % increase in cloud cover

decreases the annual thickness by 14 %. Using an observed distribution of ice thicknesses

and lead widths, sensible fluxes from the lead ensemble are reduced by 42 % when a fixed

coefficient is used. Substituting these fluxes from open and refrozen leads for the open-

water flux in the ice thickness model increases annual mean ice thickness by 9 % when

adjusted coefficients are used.
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4. Cafibration of AVHRR-TIR Sensor

K. Steffen and M. Haefliger

The surface temperature derived from AVHRR thermal infrared sensor (TIR) will be inter-

compared with outputs derived from the transmission model LOWTRAN-7 and in situ

measurements from the 1990 ETH expedition camp on the Greenland ice sheet. The

surface temperatures were measured with thermistore profile chains, and in addition the

complete radation balance was obtained at the same site. Radiosonde profile

measurements from the expedition camp (Fig. 5), obtained on a daily basis, are used as

input data for LOWTRAN-7, which can provide a good validation data set for the

AVHRR SST retrievals. The in situ ground measurements also provide a means of

calibrating the LOWTRAN-7 atmospheric model simulations Data analysis has been

completed and we have ordered AVHRR images for case studies the 1990 observation

period.
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5. Ice Surface Temperature Retrieval

J. Key, M. Haefliger)

Work on the retrieval of ice surface temperature from the AVHRR thermal channels is

continuing. In situ rawinsonde and ground-based cloud observations from Soviet ice

islands have been processed and statistically grouped into three temperature and humidity

clear sky "seasons" (Fig. 6, 7). The daily data are then used in radiative transfer

calculations of the simulated AVHRR measurements, taking into account the response

functions of the NOAA-7 and 11 AVHRRs. Since the actual surface temperature is

unknown (the first measurement is generally the shelter temperature at approximately 1.5

m), an energy balance model is used to estimate a reasonable range of surface

temperatures based on the observed wind conditions. Atmospheric correction coefficients

will then be derived through a multiple regression procedure for various combinations of

channels, and for scan angle dependencies. An overview of this material was presented at

the WMO-sponsored workshop "Polar Radiation Fluxes and Sea Ice Modeling" held in

Bremerhaven, Germany, 5-8 November 1990. A paper providing the detailed results of

this work is currently in preparation.
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6. The Effect of Sensor Resolution on Derived Cloud Fraction

J. Key

An analytical description of the relationship between a satellite-derived geophysical

parameter and sensor resolution is sorely needed. While there have been empirical studies

of the effect of sensor resolution on parameter retrieval, they dealt only with cloud fraction

(and a single cloud type such as cumulus) and cannot be generalized to other parameters.

In our analytical approach to this problem, we are concerned only with the fraction of the

image area covered by the geophysical parameter of interest; e.g., cloud fraction or open

water fraction. It is assumed that subpixel area fraction cannot be determined but that

"contamination" of the pixel can. Therefore, an indicator function is evaluated for each

pixel, with a value of 1 if the original pixel value satisfies a given condition and 0

otherwise. The condition will, of course, be related to the fractional coverage within the

pixel. The problem then becomes one of determining the probability distribution of the

subpixel fractional coverage, which depends upon the pixel size and the spatial distribution

of the geophysical parameter. This spatial distribution includes both size and shape

characteristics, which are perhaps best described by an autocovariance function.

Formalization of this problem is in progress, and will be detailed in the next report.
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7. Arctic Radiation Flux Climatology

M. Haefliger, K. Steffen, J. Key, A. Schweiger

Previous calculations were made using the radiative components reported in climatologies

based on ice island, and station observations that in part rely on crude parameterization of

radiative fluxes on surface observed cloud cover and surface temperature (Marshunova

1961). Since this early work a great deal of data that has potential for the computation of

surface radiative fluxes has become available. For example, the International Cloud

Climatology Project (ISCCP) has produced extensive data on cloud and surface parameters

for several years in the Arctic. We have recently begun developing an Arctic radiation

flux climatology based on the ISCCP monthly cloud product for the period 1 July 1983

through 31 December 1986. We will use these data to compute some of the radiative

components in a surface energy balance climatology. Fig. 8 outlines the data flow

including processing steps and sensitivity studies involved in computing radiative fluxes

from the ISCCP data. The LOWTRAN-7 radiative transfer model will be used to estimate

the surface fluxes based on cloud optical depth, surface temperature and reflectance, and

atmospheric temperature profiles retrieved from TOVS (part of the ISCCP data set).

Problems include the unknown cloud thickness, uncertain surface spectral signature in the

shortwave portion of the spectrum, unknown cloud microphysical characteristics, and a

lack of optical thickness estimates during the winter. Even with these problems, a useful

product should result, and the problems identified in the process will help drive future

research. This work will form an integral part of A. Schweiger's doctoral thesis, which

deals with the Arctic surface energy balance.

In addition to the Soviet Ice Island data, radiosonde profile measurements obtained during

the Swiss Greenland Expedition in 1990 were used for testing the radiative transfer model

LOWTRAN-7 (Tab. 1). The data set includes 80 atmosphere profiles (pressure,

temperature, humidity, wind), surface temperature and flux measurements.

Table I: Comparison of measured and modelled longwave downwelling radiative flux at the Swiss

expedition camp on the Greenland ice sheet (69 ° 17' N, 49 ° 17' W). The modelled values were

obtained using radiosonde prof'de measurements and LOWTRAN 7 model.

Condition Date Measured LOWTRAN-7 Difference

(Wm -2) (Wm -2) (%)
i rr i

clear sky 6-17-90 216 205 -5.09

clear sky 7-1-90 228 225 -1.32

cloudy sky 7-23-90 309 301 -2.59

cloudy sky 7-26-90 283 282 -0.35
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Comparisons with atmosphere profiles from the South Pole and Denver have shown, that

calculated longwave fluxes for clear sky can be derived to an accuracy of +5 %.

Although preliminary results for cloudy sky seems very good, further analysis will be

needed. Therefore, we intend to analyze the complete Greenland radiosonde data set

(1990 and 1991) and derive comparative statistics with longwave radiation retrievals from

satellite data under differing sky conditions.
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